
F
OS Support Procedures

Introduction . F-2
AddPollingProcedureRTag . F-3
Alloc . F-4
AllocateMappedPages . F-5
AllocateResourceTag . F-6
AllocBufferBelow16Meg . F-7
CancelInterruptTimeCallBack . F-8
CancelNoSleepAESProcessEvent . F-9
CancelSleepAESProcessEvent . F-10
ClearHardwareInterrupt . F-11
CPSemaphore . F-12
CRescheduleLast . F-13
CVSemaphore . F-14
DeAllocateMappedPages . F-15
DeRegisterHardwareOptions . F-16
DisableHardwareInterrupt . F-17
DoEndOfInterrupt . F-18
DoRealModeInterrupt . F-19
EnableHardwareInterrupt . F-21
Free . F-22
FreeBufferBelow16Meg . F-23
GetCurrentTime . F-24
GetHardwareBusType . F-25
GetProcessorSpeedRating . F-26
GetRealModeWorkSpace . F-27
GetServerPhysicalOffset . F-29
OutputToScreen . F-30
ParseDriverParameters . F-31
QueueSystemAlert . F-35
ReadEISAConfig . F-37
ReadRoutine . F-38
RegisterForEventNotification . F-40
RegisterHardwareOptions . F-42
RemovePollingProcedure . F-43
ScheduleInterruptTimeCallBack . F-44
ScheduleNoSleepAESProcessEvent . F-46
ScheduleSleepAESProcessEvent . F-47
SetHardwareInterrupt . F-48
UnRegisterEventNotification . F-50

Version 1.00 F – 1

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Introduction

MLIDs developed using the MSM do not need to make any calls to the
operating system. Because the sample code provided shows calls to the
operating system, this section is provided as a reference for developers.
Novell recommends that developers do not use direct calls to the
operating system.

Most of the NetWare OS support routines in this chapter are written
in C. The support routine descriptions show the procedure and
parameter names in C syntax. Each explanation includes the
parameters that must be passed on entry to the routine, the results
returned - if any, and an example.

As the examples show, the parameters are placed on the stack in the
reverse order of their definition. It is the calling programs
responsibility to clean up the stack on return.

As with other NetWare OS routines written in C, the EBX, EBP, ESI,
and EDI registers are preserved. Be aware that this is not the case for
the assembly language routines.

Note: This appendix is not intended to be a comprehensive operating system
procedure reference. It simply covers some of the primary routines used
by the MSM as an aid to understanding the sample source code.

F – 2 Version 1.00

Appendix F • OS Support Procedures

LONG

AddPollingProcedureRTag (void (*Procedure) (void),

struct ResourceTagStructure *RTag);

Parameters

Procedure Pointer to a polling procedure defined by the driver.

The OS calls this procedure at process time.

Rtag The resource tag acquired by the driver to add the polling

procedure.

On Return

EAX Zero if successful; the polling procedure was added.

Otherwise, the procedure failed and the driver should abort

initialization.

Description The driver uses AddPollingProcedureRTag to register its polling
procedure, when one exists. This routine may only be called at process
time, normally during initialization.

After this routine has completed successfully, the operating system
continuously calls the procedure specified by the procedure parameter
whenever the server has no other work to do. Because this does not
guarantee that the procedure will be called within a certain period of
time (the operating system may be busy), Novell recommends that the
driver also include an interrupt backup procedure to allow the driver to
get immediate attention.

There should be only one polling procedure per driver. A single polling
procedure should service all physical boards of the same type in the
server.

Example

push PollResourceTag ; polling resource tag
push OFFSET MyDriverPoll ; pointer to polling routine
call AddPollingProcedureRTag
add esp, 4 * 2 ; clean up stack
or eax, eax ; check for successful completion
jnz ErrorAddingPollProcedure ; handle error if necessary

Version 1.00 F – 3

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

void *

Alloc (LONG Size,

struct ResourceTagStructure *RTag);

Parameters

Size Amount of memory (in bytes) to be allocated

RTag Resource tag obtained by the driver for memory allocation

On Return

EAX Zero indicates failure; the routine was unable to allocate memory

Non-zero value is a pointer to the allocated memory

Description Alloc is used to get memory for any driver requirements, such as
IOConfigurationStructures or special buffers. This routine can be called
at either process or interrupt time. Interrupts may be in any state and
will remain unchanged.

The driver passes Alloc the amount of memory to be allocated and the
routine returns a pointer to the allocated memory. The allocated
memory is not initialized.

Example

push AllocSignatureRTag ; pointer to resource tag
push SIZE DriverConfigStructure ; amount of memory required
call Alloc
add esp, (2 * 4) ; restore stack
or eax, eax ; check for error allocating memory
jz ErrorGettingBoardDataSpace ; exit initialization on error
mov ebx, eax ; hold on to pointer to memory

F – 4 Version 1.00

Appendix F • OS Support Procedures

void *

AllocateMappedPages (LONG NumberOf4KPages,

LONG SleepOKFlag,

LONG Below16MegFlag,

struct ResourceTagStructure *RTag,

LONG *SleptFlag);

Parameters

NumberOf4KPages Number of 4K pages to allocate

SleepOKFlag Set to any non-zero value to allow this call to let other processes execute

temporarily if it needs to. If the Below16MegFlag is set, this flag must also

be set; otherwise it is optional. The advantage of setting this flag is to allow

the OS to rearrange pages if it is unable to find a continuous buffer.

Below16MegFlag Set if the pages must be physically below the first 16 Megabyte boundary.

This is only necessary for intelligent 24-bit adapters that must access

memory through a bus mastering device.

RTag Resource tag obtained by the driver for memory allocation. If the

Below16MegFlag is set, the RTag must be obtained using the

"CachBelow16MegMemorySignature". Otherwise use the same resource

tag as the one used for Alloc.

SleptFlag Pointer to a dword to be filled in by this procedure that will indicate if the call

went to sleep. If this is not needed, set to zero.

On Return

EAX Zero indicates failure; the routine was unable to allocate memory.

A non-zero value points to the allocated memory.

Description This procedure is used to allocate memory on 4K (page) boundaries and,
optionally, to obtain the memory below the 16 megabytes boundary. It
is recommended that this procedure be used instead of AllocBuffer-

Below16Meg. It is the responsibility of the driver to return this buffer
at shutdown using DeAllocateMappedPages.

Call at process time only. Interrupts can be in any state and will not
be enabled.

Example

push 0 ;Null slept flag.
push AllocRTag ;resource tag
push 0 ;no 16 meg boundary concerns
push 1 ;call can sleep if it needs to.
push (size TableStruct + 4095) SHR 12 ; Round up and convert to pages
call AllocateMappedPages ;allocate memory
add esp, (5*4) ;clean up stack
or eax, eax ;buffer returned?
je ErrorAllocatingPages ;jump if not
mov TablePointer, eax ;save pointer

Version 1.00 F – 5

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

struct ResourceTagStructure*

AllocateResourceTag (struct LoadDefinitionStructure *ModuleHandle,

BYTE *ResourceDescriptionString,
LONG ResourceSignature);

Parameters

ModuleHandle Pointer to the LoadableModuleHandle
(passed to the driver’s initialization routine on the stack)

ResourceDescriptionString Pointer to a null-terminated text string describing the resource for
which the tag is being allocated. The string can be a maximum of
16 characters including the null. For example:

InterruptDescriptionMsg db ’ACME Driver ISR’,0

ResourceSignature value identifying a specific resource type. (listed below)

On Return

EAX Resource tag identifying the specified entry type. A value of zero
indicates failure; the operating system did not allocate a resource
tag and the driver should abort initialization.

Description In order for the driver to get resources from the OS, it must first obtain
a resource tag. A resource tag is an identifier required by the OS to
track system resources.

AllocateResourceTag provides the driver with an operating system
resource tag for a specific resource type (refer to the list below). This
routine is normally called during initialization and can only be called
at process time.

There are unique tags for different types of resources. The driver must

use the following resource signatures to identify each resource tag type:

AESProcessSignature equ ’PSEA’
AllocSignature equ ’TRLA’
CacheBelow16MegMemorySignature equ ’61BC’
ECBSignature equ ’SBCE’
EventSignature equ ’TNVE’
InterruptSignature equ ’PTNI’
IORegistrationSignature equ ’SROI’
MLIDSignature equ ’DILM’
PollingProcedureSignature equ ’RPLP’
TimerSignature equ ’RMIT’

Example

push AllocSignature ; resource signature (TRLA)
push OFFSET MemoryRTagMessage ; resource message
push [esp + MyHandle + (2 * 4)] ; module handle
call AllocateResourceTag
add esp, (3 * 4) ; restore stack
or eax, eax ; allocation successful?
jz ErrorAllocatingRTag ; exit init if not
mov MemoryRTag, eax ; store pointer to tag

F – 6 Version 1.00

Appendix F • OS Support Procedures

void*

AllocBufferBelow16Meg (LONG RequestedSize

LONG *ActualSize,

struct ResourceTagStructure *RTag);

Parameters

RequestedSize number of contiguous bytes requested

*ActualSize pointer to a location where the routine places the actual number of

bytes allocated

*RTag resource tag acquired by driver for memory allocation

(with a "CacheBelow16MegMemorySignature")

On Return

EAX Zero indicates failure; the routine was unable to allocate memory.

A non-zero value points to the allocated memory.

Description AllocBufferBelow16Meg is only used to allocate memory in the case of
drivers that support 24-bit host adapters running in machines with
more than 16 megabytes of memory. For all other cases drivers must
call Alloc to allocate required memory.

This call allocates memory so the driver can do I/O operations to or
from intermediate buffers below 16 megabytes. The data can then be
copied to or from the actual request buffer when it is above the 16
megabyte boundary. The pointer to the buffer allocated is returned in
EAX (zero if none allocated). The allocated memory is not initialized.

This call must only be made at process time.

Note: Use these buffers sparingly. The pool of buffers below 16 megabytes is
limited to 16. The size of each allocated buffer is equal to the cache
buffer size. The default cache buffer size on a server is 4K. For
example, if all 16 buffers are allocated using the default cache buffer
size, 64K of memory is allocated. The number of buffers in the pool can
be set in the STARTUP.NCF file (up to a maximum of 200).

Example: Set reserved buffers below 16 Meg = 32

Example

push MemBelow16RTag ; pointer to resource tag
push OFFSET ActualSize ; amount of memory acquired
push RequestedSize ; number of bytes required
call AllocBufferBelow16Meg
add esp, 3*4 ; adjust stack pointer
or eax, eax ; check if successful
jz ErrorAllocatingMemory ; jump if error
mov MyBufferPtr, eax ; save pointer to allocated memory

Version 1.00 F – 7

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

CancelInterruptTimeCallBack
(an assembly language routine)

On Entry

EDX contains a pointer to the timer node to be canceled

Interrupts are disabled

On Return

EDI is destroyed

ESI is destroyed

Interrupts are preserved and were not enabled during the routine

Description The driver calls CancelInterruptTimeCallBack to cancel a call back
event previously scheduled using ScheduleInterruptTimeCallBack.
CancelInterruptTimeCallBack removes the specified timer node from
the list of events to be called by the timer interrupt handler.

Remember that ScheduleInterruptTimeCallBack must be rescheduled
after every call back, and that CancelInterruptTimeCallBack is only
used to cancel a call back if the driver is unloaded before the call back
occurs.

Example

push esi ; if value must be preserved
push edi ; if value must be preserved
cli
mov edx, OFFSET MyTimerNode ; pointer to TimerDataStructure
call CancelInterruptTimeCallBack
sti
pop edi ; restore original value
pop esi ; restore original value

F – 8 Version 1.00

Appendix F • OS Support Procedures

void

CancelNoSleepAESProcessEvent (struct AESProcessStructure *EventNode);

Parameters

EventNode pointer to the AESProcessEventStructure to be canceled

Description CancelNoSleepAESProcessEvent removes the specified AESEvent from
the operating system’s list of events to be called by the AES No-Sleep
Process.

This routine may be called at process or interrupt time. Before the
driver makes this call, interrupts must be disabled. When the
procedure returns, the interrupt state is still disabled and interrupts
were not enabled.

Remember that ScheduleNoSleepAESProcessEvent must be rescheduled
every time it calls the specified process. CancelNoSleepAESProcessEvent

is called only to cancel a process event if the driver is unloaded before
the process executes.

Example

cli
push OFFSET MyAESEventStructure ; address of AES structure
call CancelNoSleepAESProcessEvent
add esp, 4 ; adjust stack pointer
sti

Version 1.00 F – 9

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

void

CancelSleepAESProcessEvent (struct AESProcessStructure *EventNode);

Parameters

EventNode pointer to the AESProcessEventStructure to be canceled

Description CancelSleepAESProcessEvent removes the specified AESEvent from the
operating system’s list of events to be called by the AES Process.

This routine may be called at process or interrupt time. Before the
driver makes this call, interrupts must be disabled. When the
procedure returns, the interrupt state is still disabled and interrupts
were not enabled.

Remember that ScheduleSleepAESProcessEvent must be rescheduled
every time it calls the specified process. CancelSleepAESProcessEvent

is called only to cancel a process event if the driver is unloaded before
the process executes.

Example

cli
push OFFSET MyAESEventStructure ; address of AES structure
call CancelSleepAESProcessEvent
add esp, 4 ; adjust stack pointer
sti

F – 10 Version 1.00

Appendix F • OS Support Procedures

LONG

ClearHardwareInterrupt (LONG HardwareInterruptLevel,

void (*InterruptProcedure)(void));

Parameters

HardwareInterruptLevel IRQ level of the hardware interrupt

InterruptProcedure pointer to the interrupt procedure

On Return

EAX Zero indicates the hardware interrupt was successfully removed.

A non-zero value means the routine did not clear the interrupt vector

because of invalid parameters or not finding the vector

Description ClearHardwareInterrupt releases a processor hardware interrupt
previously allocated by SetHardwareInterrupt for a physical board.
This routine must only be called at process time and interrupts must
be disabled.

ClearHardwareInterrupt is usually called when the driver is unloading
or the initialization procedure fails after an interrupt has been set.

Example

cli
push OFFSET MyInterruptHandler ; interrupt entry
push InterruptLevel ; interrupt number
call ClearHardwareInterrupt
add esp, (2 * 4) ; restore stack
sti

Version 1.00 F – 11

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

void

CPSemaphore (LONG SemaphoreNumber);

Parameters

SemaphoreNumber pointer to the semaphore

Description CPSemaphore is used to lock the real mode workspace when making an
EISA BIOS call. Interrupts are preserved, but will be disabled during
the call.

Do not use this call to handle critical sections local to the driver.

Example

push WorkSpaceSemaphore ; load semaphore
call CPSemaphore ; lock workspace for our use
add esp, (1 * 4) ; restore stack

F – 12 Version 1.00

Appendix F • OS Support Procedures

void

CRescheduleLast (void);

Description CRescheduleLast places the task in last place on the list of active tasks
to be executed. This routine must only be called from the process level
as it will suspend the process and could change the machine state.

CRescheduleLast is normally used in conjunction with AESSleepEvents
and should only be used in the initialization or driver remove
procedures.

Example

call CRescheduleLast ; will regain control some undefined time later

Version 1.00 F – 13

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

void

CVSemaphore (LONG SemaphoreNumber);

Parameters

SemaphoreNumber pointer to the semaphore

Description CVSemaphore clears a semaphore that was set with CPSemaphore.
Interrupts are preserved, but will be disabled during the call.

Normally, CVSemaphore is used when the driver has finished making
an EISA BIOS call so that other processes can be allowed to use the
workspace.

Example

push WorkSpaceSemaphore ;pass semaphore
call CVSemaphore ;unlock workspace
add esp, (1 * 4) ;restore stack

F – 14 Version 1.00

Appendix F • OS Support Procedures

void

DeAllocateMappedPages (void *BufferPointer);

Parameters

*BufferPointer Pointer to the buffer to free.

(must have been allocated with AllocateMappedPages)

Description The driver must use this routine to return any memory buffers that
were previously allocated on 4K page boundaries using the
AllocateMappedPages procedure.

Example

push TablePointer ;pointer to buffer
call DeAllocateMappedPages ;deallocate memory
add esp, 1*4 ;clean up stack

Version 1.00 F – 15

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

void

DeRegisterHardwareOptions (struct IOConfigurationStructure *IOConfig);

Parameters

IOConfig pointer to the physical board’s IOConfigurationStructure

(starting at the CDriverLink field of the configuration table)

Description DeRegisterHardwareOptions releases the previously reserved hardware
options specif ied in a particular physical board’s
IOConfigurationStructure (starting at the CDriverLink field of the
configuration table). This procedure must only be called from the
process level and must be called with interrupts disabled.

DeRegisterHardwareOptions will usually be made from the driver’s
remove procedure (or possibly from Ctl5_MLIDShutdown if the control
procedure is doing a complete shutdown).

Example

cli
push [ebx].CDriverLink ; pointer to IOConfigurationStructure
call DeRegisterHardwareOptions
add esp, 4 ; restore stack
sti

F – 16 Version 1.00

Appendix F • OS Support Procedures

DisableHardwareInterrupt
(an assembly language routine)

On Entry

ECX contains the interrupt level

Interrupts should be disabled

Execute at process or interrupt time

On Return

Interrupts are unchanged

Note EAX and EDX are destroyed; all other registers are

preserved

Description This routine masks off the ECX-specified interrupt request line on the
programmable interrupt controller, preventing the adapter from
interrupting the driver.

This routine is not needed if the adapter runs on an edge-triggered
interruptible bus and provides a command to disable its interrupt line.

Note: Novell recommends disabling interrupts at the NIC if possible.
Disabling interrupts at the PIC is typically slower.

Example

DriverISR proc

mov ecx, InterruptLevel
call DisableHardwareInterrupt
call DoEndOfInterrupt
.
. (Service the adapter)
.
mov ecx, InterruptLevel
call EnableHardwareInterrupt
call LSLServiceEvents ; Let LSL unqueue returned
ret

DriverISR endp

Version 1.00 F – 17

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

DoEndOfInterrupt
(an assembly language routine)

On Entry

ECX contains the interrupt level

Interrupts should be disabled

Execute at process or interrupt time

On Return

Interrupts are unchanged

Note EAX is are destroyed; all other registers are preserved

Description This routine issues the appropriate End of Interrupt (EOI) commands
to one or both programmable interrupt controllers (PICs). If the level
is assigned to a secondary PIC, an EOI will be issued to the secondary
PIC, then to the primary PIC. Use of this routine (instead of hard-
coding EOIs in the driver) allows flexibility when a driver runs on
several platforms and ensures that this function is executed correctly
in the event of future operating system changes.

Example

(see example for DisableHardwareInterrupt)

F – 18 Version 1.00

Appendix F • OS Support Procedures

LONG

DoRealModeInterrupt (struct InputParameterStructure *InputParameters,

struct OutputParameterStructure *OutputParameters);

Parameters

InputParameters pointer to a filled in InputParameterStructure defined below

OutputParameters pointer to a filled in OutputParameterStructure defined below

On Return

EAX 0: if the interrupt vector is called successfully

1: if the call fails because the interrupt vector is no longer available

(DOS has been removed)

Description DoRealModeInterrupt is used to perform real mode interrupts, such as
BIOS and DOS interrupts. This routine can only be called at process
time, and it may enable interrupts and put the calling process to sleep.

EISA boards will need to use DoRealModeInterrupt to perform the INT
15h BIOS call that returns the board configuration. The parameter
structures are defined below:

InputParameters

InputParameterStructure struc
IAXRegister dw ?
IBXRegister dw ?
ICXRegister dw ?
IDXRegister dw ?
IBPRegister dw ?
ISIRegister dw ?
IDIRegister dw ?
IDSRegister dw ?
IESRegister dw ?
IntNumber db ?

InputParameterStructure ends

OutputParameters

OutputParameterStructure struc
OAXRegister dw ?
OBXRegister dw ?
OCXRegister dw ?
ODXRegister dw ?
OBPRegister dw ?
OSIRegister dw ?
ODIRegister dw ?
ODSRegister dw ?
OESRegister dw ?
OFlags dw ?

OutputParameterStructure ends

Version 1.00 F – 19

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Example

Note: The input parameter structure has already been initialized.

push OFFSET OutputParameters ; place pointer on stack
push OFFSET InputParameters ; place pointer on stack
call DoRealModeInterrupt
add esp, 2 * 4 ; clean up stack
cmp eax, 0 ; check for error
jne IntNotValidErrorExit ; handle error if necessary

F – 20 Version 1.00

Appendix F • OS Support Procedures

EnableHardwareInterrupt
(an assembly language routine)

On Entry

ECX contains the interrupt level

Interrupts are disabled

Execute at process or interrupt time

On Return

Interrupts are unchanged

Note EAX and EDX are destroyed: all other registers are

preserved

Description This routine enables the adapter’s interrupt line on the programmable
interrupt controller if DisableHardwareInterrupt was previously used.

Example

(see example for DisableHardwareInterrupt)

Version 1.00 F – 21

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

void

Free (void *MemoryBuffer);

Parameters

MemoryBuffer pointer to the previously allocated memory to be released

(Must be memory previously allocated by the Alloc routine)

Description Free returns the memory previously allocated by the driver for any
purpose. This routine may be called at either process or interrupt time.
Interrupts can be in any state and that state will be preserved.

Drivers are expected to make this call for all memory that they
allocated during initialization, and drivers should always call this
routine as an essential part of cleaning up before exiting.

Example

push MyMemoryBlock ; place pointer to memory on stack
call Free
add esp, 1 * 4 ; restore stack

F – 22 Version 1.00

Appendix F • OS Support Procedures

void

FreeBufferBelow16Meg (void *MemoryBuffer);

Parameters

MemoryBuffer pointer to the memory to be returned to NetWare

(Must be memory previously allocated by AllocBufferBelow16Meg.)

Description FreeBufferBelow16Meg returns the memory previously allocated by the
driver for Bus Master or DMA I/O which was required to be below 16
megabytes. Returning memory is an essential part of cleaning up
before exiting. This function may be called at process or interrupt time.

Example

push eax ; pointer to memory
call FreeBufferBelow16Meg
lea esp, [esp +4] ; adjust stack pointer

Version 1.00 F – 23

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

GetCurrentTime
(an assembly language routine)

On Return

EAX contains the number of clock ticks (1/18th second or 55.5

milliseconds) since the server was last loaded and began execution.

Description GetCurrentTime determines the current relative time in order to
determine the elapsed time for some driver-related activities (e.g. time
out check). The current time value less the value returned at the start
of an operation is the elapsed time in 1/18th second clock ticks. It
requires more than 7 years for this timer to roll over, allowing it to be
used for elapsed time comparisons.

Example

mov edx, [ebp].Command ; let the board attempt to
mov al, Board_Transmit ; transmit packet
out dx, al

call GetCurrentTime ; get current time
mov [ebp].TxStartTime, eax ; save for timeout monitoring

F – 24 Version 1.00

Appendix F • OS Support Procedures

GetHardwareBusType
(an assembly language routine)

On Return

EAX 0: I/O bus is ISA (Industry Standard Architecture)

1: I/O bus is MCA (Micro-Channel Architecture)

2: I/O bus is EISA (Extended Industry Standard Architecture)

Description GetHardwareBusType returns a value indicating the processor bus type.
This routine may be called at process or interrupt time, and the
interrupt state is preserved and will not change.

GetHardwareBusType allows a single driver to be written so that it can
be used for boards of different bus types.

Note: These values are different than those used in the CDriverFlags field of
the configuration table.

Example

call GetHardwareBusType
mov HardwareBusType, eax ; store returned value

Version 1.00 F – 25

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

GetProcessorSpeedRating
(an assembly language routine)

On Return

EAX Zero if routine failed to determine the processor speed.

Otherwise, EAX contains a value representing the relative processor

speed of the machine.

Description GetProcessorSpeedRating is used to determine the relative processor
speed. This routine may be called at process or interrupt time and will
not change the interrupt state.

The larger the value returned, the faster the processor can operate.
Some drivers may need to use GetProcessorSpeedRating to calculate the
correct delay for certain timing loops.

Example

call GetProcessorSpeedRating
mov ProcessorSpeedAdjust, eax ; save returned processor speed

F – 26 Version 1.00

Appendix F • OS Support Procedures

void

GetRealModeWorkSpace (struct SemaphoreStructure *WorkspaceSemaphore,

LONG *WorkspaceProtectedModeAddress,

WORD *WorkspaceRealModeSegment,

WORD *WorkspaceRealModeOffset,

LONG *WorkspaceSize);

Parameters

WorkspaceSemaphore pointer to the operating system semaphore structure

WorkspaceProtectedModeAddress 32-bit logical address of the workspace block

WorkspaceRealModeSegment real mode segment of workspace

WorkspaceRealModeOffset real mode offset in the workspace segment

WorkspaceSize size of the workspace

Description The GetRealModeWorkSpace routine is used in conjunction with
DoRealModeInterrupt to allow the driver access to memory in real
mode.

NetWare drivers run in protected mode and do not allow direct access
to BIOS based information. The call DoRealModeInterrupt allows the
driver to access the BIOS.

DoRealModeInterrupt turns on the system interrupts and executes in
a critical section; therefore, semaphore routines--CPSemaphore and
CVSemaphore are called in order to keep other processes out of the
workspace.

The driver must provide the following variables. On entry, the driver
passes this routine pointers to these variables. This routine then fills
in the variables with the appropriate values as described above.

WorkspaceSemaphore dd 0
WorkspaceProtectedModeAddress dd 0
WorkspaceRealModeSegment dw 0
WorkspaceRealModeOffset dw 0
WorkspaceSize dd 0

Version 1.00 F – 27

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

Example

;**
; Get realmode workspace
;**

push OFFSET WorkSpaceSize ; size of workspace
push OFFSET WorkSpaceRealModeOffset ; offset to real mode
push OFFSET WorkSpaceRealModeSegment ; real mode segment address
push OFFSET WorkSpaceProtectedModeAddress ; address in protected mode
push OFFSET WorkSpaceSemaphore ; semaphore
call GetRealModeWorkSpace
add esp, (5 * 4) ; clean up stack

;**
; Lock the workspace
;**

push WorkSpaceSemaphore ; load semaphore
call CPSemaphore ; lock workspace
add esp, (1 * 4) ; clean up stack

;**
; Setup and execute real mode interrupt
;**

movzx eax, WorkSpaceRealModeSegment ; get WorkSpace segment
movzx ebx, WorkSpaceRealModeOffset ; get offset into segment
mov cl, SlotToReadConfiguration ; get slot number
xor ch, ch ; read first block
mov esi, OFFSET InputParms ; point to input area
mov [esi].IAXRegister, 0D801h ; EISA read configuration
mov [esi].ICXRegister, cx ; slot and data block
mov [esi].ISIRegister, bx ; offset of DosWorkarea
mov [esi].IDSRegister, ax ; segment of DosWorkArea
mov [esi].IIntNumber, 15h ; interrupt number
push OFFSET OutputParms ; pointer to output regs
push OFFSET InputParms ; pointer to input regs
call DoRealModeInterrupt
lea esp, [esp + 2 * 4] ; clear up stack
cmp eax, 0 ; error check
jne IntNotValidErrorExit ; error path
cmp byte ptr OutputParms.OAXRegister + 1,0 ; BIOS Int 15h return
jne IntNotValidErrorExit ;successful ?
mov esi, WorkSpaceProtectedModeAddress ; load pointer to data
movzx ecx, BYTE PTR [esi + INTERRUPTOFFSET] ; get int if any
and cl, ISOLATEINTMASK ; isolate interrupt level
jecxz NoAddInterrupt ; if none skip add
mov SaveInterrupt, cl ; save interrupt for later

;**
; Unlock interrupt
;**

NoAddInterrupt:
push WorkSpaceSemaphore ; pass semaphore
call CVSemaphore ; unlock workspace
add esp, (1 * 4) ; clean up stack

F – 28 Version 1.00

Appendix F • OS Support Procedures

GetServerPhysicalOffset
(an assembly language routine)

On Return

EAX contains a 32-bit physical address

Description GetServerPhysicalOffset returns the physical address of the operating
system’s logical address 0. Use this value to convert physical addresses
to logical addresses and vice versa. The routine may be called at
process or interrupt time. It may be called with the interrupts in any
state, and will not change the state.

To find the physical address given a logical offset, add the address this
routine returns to the logical address. To find the logical address given
a physical address, subtract the value returned from the physical
address.

The value that GetServerPhysicalOffset returns could be necessary in
making address conversions during the initialization of DMA channels
and bus mastering devices, and in the validation of specified hardware
options.

Example

call GetServerPhysicalOffset
add esp, 1 * 4

Version 1.00 F – 29

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

LONG

OutputToScreen (struct ScreenStruct *screenID,

char *controlString,

args...);

Parameters

screenID ScreenHandle of the console screen which is passed to the driver

during initialization

controlString pointer to a null-terminated ASCII string

args... procedure can take a variable number of standard Printf control

string arguments

On Return

EAX zero if successful

Description OutputToScreen is used to display a driver error message on the server
console screen. This routine must only be called during initialization
at process time. It will not suspend the calling process.

Drivers should not display non-vital messages and should limit the
number of lines output to the screen for essential messages as
displaying unneeded output will cause important information to scroll
off the screen. controlString can be embedded with returns, line feeds,
bells, tabs and backspaces. However, if strings contain embedded
substrings, numbers and control information, they must be limited in
length to a maximum of 200 characters as longer strings than this will
cause the server to abend. If longer strings are necessary, split the
string into several strings and call OutputToScreen multiple times.

Note: ScreenID is not valid after returning from the initialization routine, so
OutputToScreen can only be used during initialization.

Example

push OFFSET MyMessage ; push offset to message
push [esp + InitializationErrorScreen + 4] ; screen handle
call OutputToScreen
add esp, 2 * 4 ; restore stack

F – 30 Version 1.00

Appendix F • OS Support Procedures

LONG

ParseDriverParameters (struct IOConfigurationStructure *IOConfig,

struct DriverConfigurationStructure *configuration,

struct AdapterOptionDefinitionStructure *adapterOptions,

struct LANConfigurationLimitStructure *configLimits,

BYTE (*FrameTypeDescription)[],

LONG needBitMap,

BYTE *commandLine,

struct ScreenStruct *screenID);

Parameters

IOConfig pointer to the Adapter’s IOConfigurationStructure

(starting at the CDriverLink field of the configuration table)

configuration pointer to the logical board’s configuration table

adapterOptions pointer to the AdapterOptionDefinitionStructure

configLimits pointer to the LANConfigurationLimitStructure

FrameTypeDescription pointer to the beginning of an array of pointers to frame descriptors

which defines the supported frame type of the packet

needBitMap bit map telling ParseDriverParameters which hardware options the

adapter requires

CommandLine pointer to the command line passed to the driver at load time

ScreenID pointer to the ScreenHandle which was passed to the driver at

initialization

On Return

EAX Zero: Successful

Non-zero: Failed

Description ParseDriverParameters utilizes the command line parameters, operator
input, and the tables provided by the driver to fill in the
IOConfigurationStructure (starting at the CDriverLink field of the
configuration table) associated with the configuration table of the logical
board. This routine must only be called from the process level as it may
suspend the process and could change the machine state. In addition,
this routine can only be called at initialization time because screenID

is only valid at that time.

Version 1.00 F – 31

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

ParseDriverParameters is used in conjunction with
RegisterHardwareOptions. Examples of the tables which are provided
by the driver are listed below along with the definition of the macro
"Message":

FrameDescriptTable

FrameDescriptTable
dd Ethernet8023Descript
dd EthernetIIDescript
dd Ethernet8022Descript
dd EthernetSNAPDescript

Message Ethernet8023Descript, ’ETHERNET_ 802.3’
Message EthernetIIDescript, ’ETHERNET_II’
Message Ethernet8022Descript, ’ETHERNET_802.2’
Message EthernetSNAPDescript, ’ETHERNET_SNAP’

Message macro definition

Message macro MessageName, MessageString
local StringEnd, StringBegin

MessageName db StringEnd - StringBegin
StringBegin db MessageString
StringEnd db 0

endm

Note: The message macro used above causes the strings in the
FrameDescriptTable to be length preceded and null terminated.

The AdapterOptionDefinitionStructure is a hard coded part of the
MLID’s data structure. Using the NeedsBitMap as a guide,
ParseIOParameters collects the necessary information from the
command line and from the AdapterOptionDefinitionStructure, fills out
the appropriate fields in the configuration table and returns
successfully.

The driver doesn’t necessarily set the bit in the bitmap field if it uses
a parameter; but, if there are multiple possibilities and the driver
wants ParseDriverParameters (by asking the network supervisor at the
console or by parsing the command line) to determine which option to
use, it must set the appropriate bit in the NeedsBitMap.

F – 32 Version 1.00

Appendix F • OS Support Procedures

Each field in the AdapterOptionDefinitionStructure is a pointer. If the
option is not supported, a zero is placed in that field. If an option is
supported, a pointer to an option list is placed in that field. The
AdapterOptionDefinitionStructure appears as follows:

AdapterOptionDefinitionStructure struc

IOSlot dd ?
IOPort0 dd ?
IORange0 dd ?
IOPort1 dd ?
IORange1 dd ?
MemoryDecode0 dd ?
MemoryLength0 dd ? ; length in bytes
MemoryDecode1 dd ?
MemoryLength1 dd ? ; length in bytes
Interrupt0 dd ?
Interrupt1 dd ?
DMA0 dd ?
DMA1 dd ?
Channel dd ?

AdapterOptionDefinitionStructure ends

Example option list:

IRQOptions dd 4 ;option count
dd 3, 2, 5, 7

MemoryOptions dd 2 ;option count
dd 0D000h, 0D8000h

IOPortOptions dd 4 ;option count
dd 300h, 310h, 320h, 330h

AdapterOptions AdapterOptionDefinitonStructure
<,IOPortOptions,,,,MemoryOptions,,,,IRQOptions>

LAN Configuration Limits

MinAddress db 6 dup (0)
MaxAddress db 5 dup (0FFh), 0FEh

ConfigLimits label
MinNodeAddressPtr dd MinAddress
MaxNodeAddressPtr dd MaxAddress
MinRetries dd 0
MaxCRetries dd 255
NumberFrames dd 4

Note: If the driver uses slots, and can scan them at run time to determine
which of them hold boards, it should build the appropriate option list
without operator intervention.

CanSetNodeAddress or MustSetNodeAddress flags must be specified in
the NeedsBitMap parameter if this option is desired. (These flags were
previously in the NeedFlags parameter of v3.0.)

Version 1.00 F – 33

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

NeedsBitMap

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Bit # Needs Option

0 NeedsIOSlotBit (00000001h)

1 NeedsIOPort0Bit (00000002h)

2 NeedsIOLength0Bit (00000004h)

3 NeedsIOPort1Bit (00000008h)

4 NeedsIOLength1Bit (00000010h)

5 NeedsMemoryDecode0Bit (00000020h)

6 NeedsMemoryLength0Bit (00000040h)

7 NeedsMemoryDecode1Bit (00000080h)

8 NeedsMemoryLength1Bit (00000100h)

9 NeedsInterrupt0Bit (00000200h)

10 NeedsInterrupt1Bit (00000400h)

11 NeedsDMA0Bit (00000800h)

12 NeedsDMA1Bit (00001000h)

13 NeedsChannelBit (00002000h)

30 CAN_SET_NODE_ADDRESS (40000000h)

31 MUST_SET_NODE_ADDRESS (80000000h)

Example

push [esp + InitializationErrorScreen] ; screen handle
push [esp + ConfigurationInfo + 4] ; pointer to command line
push NeedsIOPort0Bit OR NeedsInterrupt0Bit OR CanSetNodeAddress
push OFFSET FrameDescriptTable ; media ID string array
push OFFSET ConfigLimits ; node and Retry limits
push OFFSET AdapterOptions ; options to query from user
push OFFSET DriverConfiguration ; driver configuration table
push OFFSET [ebx].CDriverLink ; IO configuration table
call ParseDriverParameters
add esp, 8 * 4 ; clean up stack
or eax, eax ; successful?
jnz ErrorParsingDriverOptions ; exit init if not

F – 34 Version 1.00

Appendix F • OS Support Procedures

LONG

QueueSystemAlert (LONG TargetStation,

LONG TargetNotificationBits,

LONG ErrorLocus,

LONG ErrorClass,

LONG ErrorCode,

LONG ErrorSeverity,

BYTE *controlString,

. . .);

Parameters

TargetStation connection number of the affected station or 0 if no single station is

affected (this parameter is usually 0)

TargetNotificationBits destinations of the notification

ErrorLocus locus of the error

ErrorClass class of error

ErrorCode error codes for the system log

ErrorSeverity severity of error

controlString standard Printf control string used in the output routine

... the routine can take a variable number of standard Printf control

string arguments

On Return

EAX 0: Successful

1: Alert Not Available

Description QueueSystemAlert provides a system notification of driver hardware or
software problems during regular operation of the board. This routine
may be called at process or interrupt time and will not sleep. When the
routine returns, the interrupt states are preserved. If the routine is
called with interrupts disabled, interrupts will not have been enabled.

Listed below is a detailed description of each parameter for this call.

TargetStation

This parameter usually holds a zero, which means that no single
station is affected.

TargetNotificationBits
NOTIFY_CONNECTION_BIT 01h
NOTIFY_EVERYONE_BIT 02h
NOTIFY_ERROR_LOG_BIT 04h
NOTIFY_CONSOLE_BIT 08h

Version 1.00 F – 35

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

ErrorLocus
LOCUS_UNKNOWN 0h
LOCUS_LANBOARDS 4h

ErrorClass
CLASS_UNKNOWN 0h
CLASS_TEMP_SITUATION 2h
CLASS_HARDWARE_ERROR 5h
CLASS_BAD_FORMAT 9h
CLASS_MEDIA_FAILURE 11h
CLASS_CONFIGURATION_ERROR 15h
CLASS_DISK_INFORMATION 18h

ErrorCode
OK 00h
ERR_HARD_FAILURE 0ffh

ErrorSeverity
SEVERITY_INFORMATIONAL 0h
SEVERITY_WARNING 1h
SEVERITY_RECOVERABLE 2h
SEVERITY_CRITICAL 3h
SEVERITY_FATAL 4h
SEVERITY_OPERATION_ABORTED 5h

Example

TransmitTimeoutMessage db ’Transmit failure on board #%d’, 0

movzx eax, [ebx].CDriverBoardNumber ; pass the board number
push eax
push OFFSET TransmitTimeoutMessage ; pass error string
push SEVERITY_RECOVERABLE ; SeverityRecoverable
xor eax, eax
push eax ; error code
push CLASS_HARDWARE_ERROR ; ClassHardwareFailure
push LOCUS_LANBOARDS ; LocusLANboards
push 01100b ; console & ErrorLog
push eax ; station #, not used
call QueueSystemAlert
add esp, 8 * 4 ; clean up stack

F – 36 Version 1.00

Appendix F • OS Support Procedures

ReadEISAConfig
(an assembly language routine)

On Entry

ECX CH=Block, CL=Slot

Interrupts may be in any state

Execute at process time only (typically during initialization)

On Return

EAX 00h = successful

01h = Int 15h vector removed

80h = invalid slot number

81h = invalid function number

82h = nonvolatile memory corrupt

83h = empty slot

86h = invalid BIOS routine called

87h = invalid system configuration

ESI Pointer to the buffer containing the configuration read

Zero Flag Set if successful

Interrupts are preserved but may have been enabled

Note EDX and EDI are destroyed

Description This procedure reads the EISA configuration block for the specified slot
into a 320-byte buffer. Normally the driver will call this routine with
Block = 0. If the information is not found in this block, continue calling
this routine and incrementing the Block number until the right block
is received (or you run out of blocks).

The configuration block returned should be copied into local memory.
Once the driver returns to the operating system or calls a blocking
procedure, the block information is no longer valid.

Version 1.00 F – 37

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

LONG

(*ReadRoutine) (LONG CustomFileHandle,

LONG CustomDataOffset,

LONG *Destination,

LONG CustomDataSize);

Parameters

CustomFileHandle .LAN file’s handle, supplied as LoadableModuleFileHandle to the

InitializeDriver routine

CustomDataOffset starting offset in the file, supplied as CustomDataOffset to the

InitializeDriver routine

Destination buffer for file data to be read

CustomDataSize size of the data to read, supplied as CustomDataSize to the

InitializeDriver routine

On Return

EAX Zero: Successful

Non-zero: Failed

Description ReadRoutine allows drivers to read custom data or firmware that may
be required by specific LAN drivers into system memory during
initialization. This routine can only be accessed during initialization.
Before this routine is called, memory for the file to be read needs to be
allocated. This routine may go to sleep and interrupts may be enabled
on return.

The entry point of the ReadRoutine is not exported by the operating
system. The only place it is valid is in the initialization routine. In
fact, the entry point is passed as a local parameter (&ReadRoutine) and
must be called indirectly.

The NLM linker actually appends the custom data file to the driver in
the .LAN file. NetWare only loads the driver’s code data at load time,
leaving the file open for the driver to handle custom data however it
wants.

To define the custom file, use the CUSTOM key word in the driver
definition file followed by the file’s name. Netware passes the custom
file’s handle, starting address, and size to the initialization routine.
NetWare also passes the address of the ReadRoutine. The driver’s
initialization routine can then read the file into memory by calling the
ReadRoutine.

The driver must supply the destination in memory according to the
needs of the board.

F – 38 Version 1.00

Appendix F • OS Support Procedures

Example

mov eax, dword ptr [esp + CustomDataSize] ; get size of firmware
push MemoryRTag ; push tag
push eax ; push size
call Alloc ; allocate memory to
add esp, 2 * 4 ; clean up stack
or eax, eax ; did we get it?
jz ErrorGettingExtraMemory ; error exit if not

mov FirmWareBufferPtr, eax ; save firmware buffer
mov esi, eax ; allocated memory
mov eax, [esp + LoadableModuleFileHandle] ; file handle firmware
mov ebx, [esp + &ReadRoutine] ; read routine address
mov edx, [esp + CustomDataOffset] ; start address in file
mov ecx, [esp + CustomDataSize] ; get size of firmware
push ecx ; amount to read
push esi ; where to read to
push edx ; offset in file
push eax ; file handle
call ebx ; call read routine
cli ;stop interrupts
add esp, 4 * 4 ; adjust the stack
or eax, eax ; check for read
jnz ReadError ; errors

Note: The "custom" key word must be used in the definition file to specify the
file name for the firmware.

Version 1.00 F – 39

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

LONG

RegisterForEventNotification
(struct ResourceTagStructure *resourceTag,

LONG eventType,

LONG priority,

void (*warnProcedure) (void (*OutputRoutine)(BYTE *controlString,...), LONG parameter),

void (*reportProcedure)(LONG parameter));

Parameters

ResourceTag resource tag which is acquired by the driver for event notification

eventType type of event for which notification is desired

priority order in which registered call back routines will be called

warnProcedure pointer to a call back routine which will be called when EventCheck

is called

OutputRoutine used to warn the user against a particular event

controlString standard Printf control string used in the output routine

... additional parameters may be passed to the output routine in order

to match the control string requirements

parameter 32 bit value which is defined according to the event type

reportProcedure pointer to a call back routine that is called when EventReport is

called

On Return

EAX Zero: Fail

Non-zero: Successful; EAX contains an EventID that should be used

when UnRegisterEventNotification is called.

Description RegisterForEventNotification is called at initialization in order to
register an event call back routine. For example, the driver calls this
routine so that it can be notified if the server is going to exit to DOS.
This gives the driver a chance to cancel any AES or timer events and
allows bus master devices to return pre-allocated resources and
shutdown the adapter.

This procedure will add routines to the event list when an event is
reported. These routines will be called according to priority. The
warning routine will be called when an EventCheck is called by the
operating system, and the report routine will be called when an
EventReport is called by the operating system. The parameter passed
in when the event is reported will be passed to the routine when it is
called. This routine will return an EventID that should be used when
UnRegisterEventNotification is called.

F – 40 Version 1.00

Appendix F • OS Support Procedures

When the type of event (defined by eventType) occurs, the operating
system calls the call back routine. The type of events which may be
defined in eventType are listed below:

EVENT_DOWN_SERVER 4h

The warn routine and the report routine will be called before the
server is shut down. The parameter value is not used.

EVENT_CHANGE_TO_REAL_MODE 5h

The report routine will be called before the server changes to real
mode and must not go to sleep. The parameter value is not used.

EVENT_RETURN_FROM_REAL_MODE 6h

The report routine will be called after the server returns from DOS
and must not go to sleep. The parameter value is not used.

EVENT_EXIT_TO_DOS 7h

The report routine will be called before the server exits to DOS.
The parameter value is not used.

The order in which the call back routines will be called is determined
by the priority parameter. Higher priority routines (indicated with a
lower number in the priority parameter) are notified first. The
available priorities are listed below:

EVENT_PRIORITY_OS 00h
EVENT_PRIORITY_APPLICATION 20h
EVENT_PRIORITY_DEVICE 40h

The call back routines will be passed a parameter, as well as a report
routine to be used to warn the user against the occurrence of a
particular event. Nulls may be passed to the routine. The parameter
reportProcedure will be passed a parameter containing additional event
specific information when it is needed.

Example

push OFFSET ExitOSEvent ;Address of exit routine
push 0
push EVENT_PRIORITY_OS ;Set priority level
push EVENT_EXIT_TO_DOS ;Set what event
push EventResourceTag ;Resource event tag
call RegisterForEventNotification
add esp, 4 * 5 ;Clear up stack
or eax, eax ;Did OS patch in call?
jz EventPatchError ;Error did not add procedure
mov EventID,eax

The driver calls RegisterForEventNotification so it can be notified if the
server exits to DOS. This will give the driver a chance to service the
physical board before the OS exits to DOS. This is especially important
for physical boards that use DMA or are bus master devices which need
to be shutdown to prevent them from writing to memory after DOS gets
control.

Version 1.00 F – 41

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

LONG

RegisterHardwareOptions (struct IOConfigurationStructure *IOConfig,

struct DriverConfigurationStructure *configuration);

Parameters

IOConfig pointer to the CDriverLink field in the logical board’s configuration
table

configuration pointer to the logical board’s configuration table

On Return

EAX =0: Success; a new adapter was registered.
=1: Success; a new frame type was registered.
=2: Success; a new channel (multichannel adapters) was registered.
>2: The routine failed to register the hardware because of

either a conflict or a bad parameter.

Description RegisterHardwareOptions reserves hardware options for a particular
physical board. This routine must only be called from the process level
and will not sleep. It can be called from any interrupt state and it will
not change that state.

RegisterHardwareOptions should be passed a pointer to an
IOConfigurationStructure (starting at the CDriverLink field of the
configuration table) with the specified hardware options to reserve. If
any of the hardware options are already in use, the routine returns an
error code.

Example

push OFFSET [ebx].CDriverSignature
push OFFSET [ebx].CDriverLink
call RegisterHardwareOptions ;Register hardware
add esp, 2 * 4 ;Now restore stack

cmp eax, 2
ja ErrorRegisteringHardware
je NewChannel
cmp eax, 1
je NewFrame

;;jmp NewAdapter

F – 42 Version 1.00

Appendix F • OS Support Procedures

void

RemovePollingProcedure (void (*Procedure)(void));

Parameters

Procedure pointer to a previously added polling procedure

Description RemovePollingProcedure is used to remove a driver’s poll routine from
the server’s list of polling procedures. This routine may only be called
at process time and will not sleep. Interrupts can be in any state and
that state will not be changed.

RemovePollingProcedure should be called when a polled driver unloads.

Example

push OFFSET NewDriverPoll ;Remove us from poll
call RemovePollingProcedure ;List
add esp, 4

Version 1.00 F – 43

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

ScheduleInterruptTimeCallBack
(an assembly language routine)

On Entry

EDX points to a timer node data structure

Interrupts are disabled

Call at process or interrupt time

On Return

Interrupts interrupts are preserved and are not enabled

Note EBX and EBP are preserved; assume all other registers are
destroyed.

Description ScheduleInterruptTimeCallBack is used to add an event to the list of
events that will be called by the timer interrupt handler. The specified
procedure will only be called once, and the driver must call
ScheduleInterruptTimeCallBack each time it wants a call back. This
process does not relinquish control of the CPU.

The TimerNodeDataStructure is shown below:

TimerNodeDataStructure struc
TLINK dd
TCallBackProcedure dd ;Set by caller
TCallBackEBXParameter dd ;Set by caller
TCallBackWaitTime dd ;Set by caller
TResourceTag dd ;Set by caller
TReserved1 dd
TReserved2 dd

TimerNodeDataStructure ends

F – 44 Version 1.00

Appendix F • OS Support Procedures

The appropriate fields of this structure should be filled out as follows:

TCallBackProcedure

A pointer to the procedure to be called by the timer interrupt handler.
When the procedure is called, interrupts are disabled.

TCallBackEBXParameter

The value EBX should contain when the call back procedure is invoked.

TCallBackWaitTime

The amount of time, in ticks, before the call back procedure is invoked.

TResourceTag

The resource tag the driver allocated in order to use this call

The four fields described above are not changed by the operating
system. If the driver reschedules another call back, it does not need to
reset these fields.

Example

cli
mov edx, OFFSET MyTimerNode ;TimerNodeDataStructu

re
mov [edx].TCallBackEBXParameter, ebp ;Save AdapterPoint
mov ebx, OFFSET MyTimerInterruptCallBackRoutine
mov [edx].TCallBackProcedure, ebx
mov ebx, TimerResourceTag
mov [edx].TResourceTag, ebx
mov [edx].TCallBackWaitTime, 5 ;Wake up in 5 ticks
call ScheduleInterruptTimeCallBack

Note: TResourceTag points to the resource tag acquired by the driver for
InterruptTimeCallBacks

Version 1.00 F – 45

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

void

ScheduleNoSleepAESProcessEvent (struct AESProcessStructure *EventNode);

Parameters

EventNode pointer to an AESProcessStructure

Description ScheduleNoSleepAESProcessEvent sets up a background AESNoSleep
(AsynchronousEventScheduler) process that will be executed at a
desired interval. This procedure can be called at process time or
interrupt time. The scheduled procedure will be called at process time
and will not relinquish control. When the procedure returns, the
interrupt state is preserved and will not have been changed.

ScheduleNoSleepAESProcessEvent will only execute the scheduled
procedure once. The driver must call ScheduleNoSleepAESProcessEvent
every time it wants to execute the procedure.

The driver must have allocated the structure prior to the first call and
must have provided the execution level and execution address.

The AESProcessStructure is defined below:

AESLink dd 0
AESWakeUpDelayAmount dd 0
AESWakeUpTime dd 0
AESProcessToCall dd 0
AESRTag dd 0
AESOldLink dd 0

The fields that need to be filled out by the caller in the
AESProcessStructure are not changed by the operating system and do
not need to be reset if the driver schedules the process again.

Example

push eax ;Points to an AES structure
call ScheduleNoSleepAESProcessEvent
add esp, 4 ;Adjust the stack pointer

F – 46 Version 1.00

Appendix F • OS Support Procedures

void

ScheduleSleepAESProcessEvent (struct AESProcessStructure *EventNode);

Parameters

EventNode pointer to an AESProcessStructure.

Description ScheduleSleepAESProcessEvent sets up a background AES (Sleep
Asynchronous Event Scheduler) thread that will be executed at a
desired interval and can be blocked or can make blocking calls while
executing. This procedure can be called at process time or interrupt
time. The scheduled process will be called at process time and may
relinquish control. When the procedure returns, the interrupt state is
preserved and will not have been changed.

The scheduled procedure (or thread) will only be executed once. The
driver must call ScheduleSleepAESProcessEvent each time it wants to
execute the procedure (or thread).

The driver must have allocated the structure prior to the first call, and
must have provided the execution interval and execution address. A
single call to this routine will cause a single entry to the defined
routine.

The AESProcessStructure is defined in
ScheduleNoSleepAESProcessEvent.

Example

push eax ;Points to an AES structure
call ScheduleSleepAESProcessEvent
add esp, 4 ;Adjust the stack pointer

Version 1.00 F – 47

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

LONG

SetHardwareInterrupt (LONG hardwareInterruptLevel,

void (*InterruptProcedure) (void),
struct ResourceTagStructure *RTag,
LONG endOfChainFlag,
LONG shareFlag,
LONG *EOIFlag);

Parameters

HardwareInterruptLevel hardware interrupt level

InterruptProcedure pointer to the interrupt procedure that will be assigned to the
specified interrupt vector

RTag pointer to ResourceTag acquired by the driver for interrupts

endOfChainFlag flag which indicates whether chained interrupts are to be placed on
the front or the back of the queue by the ISR

shareFlag flag which indicates whether interrupts may be shared by the device
and the driver with other boards and drivers

EOIFlag pointer to a double-word flag indicating whether a second EOI will
be required for this interrupt

On Return

EAX 0: Successful
1: Invalid parameter
2: Invalid sharing mode
3: Out of memory

Description SetHardwareInterrupt allocates the specified interrupt and provides an
ISR entry point. This procedure must only be called from the process
level, and it will not suspend the calling process. The interrupts must
be disabled, and it will not enable interrupts.

The interrupt procedure will be called with all the registers preserved,
ES and DS initialized, and the direction flag cleared. Because interrupt
procedures are called as a near procedure, they should return using a
RET.

F – 48 Version 1.00

Appendix F • OS Support Procedures

This routine uses three flags:

endOfChainFlag

If this flag is equal to 0, the ISR is to be placed on the front of the
queue (non-shared interrupts should use 0). If this flag is equal to 1,
and the shareFlag is also equal to 1, the ISR should be placed at the
end of the queue.

shareFlag

If this flag is equal to 0 the interrupt is non-sharable. If the flag is
equal to 1, the interrupt can be shared.

EOIFlag

If this flag returns with a 0, only one EOI will be required for this
interrupt. This flag will be initialized by SetHardwareInterrupt. If this
flag is not 0, the interrupt is chained, and the second PIC will also need
an EOI. Always EOI the slave (or secondary) PIC first, and then EOI
the master (or primary) PIC second.

Example

push OFFSET EOIFlag
push 0 ;Non sharable interrupt
push 0 ;End of Chain Flag
push InterruptResourceTag ;Pointer to RTag
push OFFSET MyInterruptHandler
push MyInterruptLevel ;Interrupt entry

call SetHardwareInterrupt ;Get interrupt back
add esp, (6 * 4) ;Interrupt number
or eax, eax ;Error getting interrupt
jnz MLIDResetExit ;Exit if so
.
.
.

MyInterruptHandler proc near
.
.
.
ret
MyInterruptHandler endp

Version 1.00 F – 49

ODI Developer’s Guide for NetWare Server Driver Hardware Specific Modules

LONG

UnRegisterEventNotification (LONG eventID);

Parameters

eventID value which is returned from RegisterForEventNotification

On Return

EAX 0: Successful

1: Fail

Description

UnRegisterEventNotification should be called to unhook the driver from
event notification. This routine should be called when the driver is
being unloaded.

Note: Do NOT call this routine from within the routine that was called by
RegisterforEventNotification.

Example

push EventID ;Unhook from OS exit
call UnRegisterEventNotification ;Call OS to unhook
add esp, 4 ;Clear stack

F – 50 Version 1.00

